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We pretrain METAGENE-1, a 7-billion-parameter autoregressive transformer model, which we refer to as a
metagenomic foundation model, on a novel corpus of diverse metagenomic DNA and RNA sequences comprising
over 1.5 trillion base pairs. This dataset is sourced from a large collection of human wastewater samples,
processed and sequenced using deep metagenomic (next-generation) sequencing methods. Unlike genomic
models that focus on individual genomes or curated sets of specific species, the aim of METAGENE-1 is to
capture the full distribution of genomic information present within this wastewater, to aid in tasks relevant to
pandemic monitoring and pathogen detection. We carry out byte-pair encoding (BPE) tokenization on our
dataset, tailored for metagenomic sequences, and then pretrain our model. In this paper, we first detail the
pretraining dataset, tokenization strategy, and model architecture, highlighting the considerations and design
choices that enable the effective modeling of metagenomic data. We then show results of pretraining this
model on our metagenomic dataset, providing details about our losses, system metrics, and training stability
over the course of pretraining. Finally, we demonstrate the performance of METAGENE-1, which achieves
state-of-the-art results on a set of genomic benchmarks and new evaluations focused on human-pathogen
detection and genomic sequence embedding, showcasing its potential for public health applications in pandemic
monitoring, biosurveillance, and early detection of emerging health threats.

Website: metagene.ai
Model Weights: huggingface.co/metagene-ai
Code Repository: github.com/metagene-ai

1. Introduction

The development of large language models trained on internet-scale text datasets has revolutionized natural
language processing, finding increasingly broad applications across numerous domains. In recent years, this
modeling technology has been adapted to genomic sequences—e.g., DNA or RNA strands that carry genetic
information—leveraging the wealth of data generated by advances in genome sequencing over the past few
decades (Ji et al., 2021, Nguyen et al., 2024b, Dalla-Torre et al., 2023, Zhou et al., 2023, Fishman et al.,
2023). These large genomic models aim to harness modeling power for tasks such as genome classification,
phenotype prediction, gene network inference, human genome analysis, and biological design for medical
and therapeutic applications. To date, most of these models have been trained on human genomes or on
curated collections of genomes from selected species (Consens et al., 2023, Benegas et al., 2024).

Parallel to these developments, there has been significant work on large-scale health monitoring driven
largely by widespread public health crises, such as the COVID-19 pandemic (Salomon et al., 2021, Reinhart
et al., 2021). One notable example of this is the genomic monitoring of wastewater, which involves sequencing
material from samples of municipal sewage (Farkas et al., 2020, Consortium, 2021). Wastewater contains a
complex mix of organic materials generated from human activities and, when collected across multiple time
points and locations, can reveal valuable information about the microbiome at a societal scale (Bogler et al.,
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Figure 1: Overview of METAGENE-1 and applications. Wastewater samples are collected and undergo deep
metagenomic sequencing to generate DNA and RNA sequences totaling over 1.5 trillion base pairs. These sequences
are tokenized using byte-pair encoding (BPE) to create the pretraining dataset. The data is used to train METAGENE-1,
a 7B-parameter transformer model that enables a wide range of metagenomic analysis and monitoring applications.

2020, Levy et al., 2023). Consequently, there have been various efforts to collect wastewater and sequence
metagenomic information, i.e., information about the diverse collections of organisms and organic material
present in these samples (Medema et al., 2020, Mao et al., 2020, McClary-Gutierrez et al., 2021). A key
motivation for much of this work is the potential to track the prevalence of human pathogens, effectively
creating an early warning system for pandemics. Multiple ongoing initiatives are collecting vast amounts of
metagenomic information to monitor genomic trends, estimate the prevalence of sequences of interest, and
detect new or emerging potential pathogens (Consortium, 2021, Keshaviah et al., 2021, Levy et al., 2023).

These wastewater metagenomic sequencing efforts present two significant opportunities. First, they provide
a novel and rich source of metagenomic data, rivaling the scale of datasets used to pretrain large language
models (i.e., trillions of nucleic acid base pairs), encompassing highly diverse genomic information across
the broad human-adjacent microbiome (Breitwieser et al., 2019, Tisza and Buck, 2021). This metagenomic
data often exhibits unique distributional characteristics in terms of genomic sequence length, heterogeneity,
and composition/type of organisms, distinguishing it from previous genome modeling datasets. Second,
this data opens up a new domain area for downstream applications of foundation models trained on this
information. Such models could be fine-tuned for various tasks crucial to pathogen monitoring, including
tracking frequencies, trends, and growth of different sequence types; representation learning and embedding
for sequenced metagenomic reads; sequence alignment, error-correction, and infilling; and human pathogen
detection and taxonomic classification (Consortium, 2021).

In this paper, we take an initial step toward developing a metagenomic foundation model by pretraining a
model on a large, new dataset sequenced from wastewater. This metagenomic dataset, which has never before
been used for model training, provides a unique resource for modeling the broad distribution of sequences
present in the human microbiome. Specifically, we pretrain a 7-billion-parameter autoregressive transformer
model, which we refer to as METAGENE-1, on a diverse corpus of DNA and RNA sequences comprising
over 1.5 trillion base pairs sourced from wastewater samples, which were processed and sequenced using
deep metagenomic (next-generation) sequencing (Bragg and Tyson, 2014, Consortium, 2021). This dataset,
comprising short uncurated sequences from tens of thousands of species, allows METAGENE-1 to excel at
representing the complexities of microbial and viral diversity, providing unique advantages in biosurveillance
applications. METAGENE-1 adopts a decoder-style language model architecture, similar to those found in
the GPT and Llama families of models (Radford et al., 2019, Touvron et al., 2023), which we describe and
motivate in more detail in Sec. 3.3. This choice allows us to take advantage of the broad (and rapidly growing)
ecosystem of techniques and infrastructure focused on this class of models. An overview of METAGENE-1
data, model architecture, and applications is shown in Figure 1.
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In the following sections, we first describe our metagenomic dataset and detail the tokenization strategy used
to process the sequence data. We then provide comprehensive details of the METAGENE-1 model architecture
and of the pretraining process on our dataset. Subsequently, we develop, and demonstrate our model’s
performance, on pathogen detection and metagenomic embedding benchmarks. METAGENE-1 achieves
state-of-the-art performance on these and other standard genomic evaluation tasks—designed to evaluate
models trained on human and animal genomes—highlighting its generalization capabilities. As an initial
demonstration of the downstream application potential, we construct an anomaly detection scenario, and
show that METAGENE-1 performs well on this out-of-distribution detection task. We hope our paper serves
as an initial step toward a foundation model for metagenomic data, which in the future can be fine-tuned to
aid in public health applications such as pathogen monitoring and early detection of emerging health threats.

2. Related Work

Language models trained on genomic sequences have been an area of active research, with many aiming
to train on long DNA sequences from specific species, gained from publicly available sources. For instance,
models such as DNABERT (Ji et al., 2021), HyenaDNA (Nguyen et al., 2024b), GROVER (Sanabria et al.,
2024), and Caduceus (Schiff et al., 2024) are examples primarily trained on long sequences of human
DNA. These models typically use encoder-based architectures or decoder-only non-transformer architectures,
aiming to handle long sequence lengths. For tokenization, these initial human-focused genome models have
commonly employed either k-mer tokenization (with fixed values like k=3) or single-nucleobase tokenization.

Recently, the scope of genomic models has expanded to include multi-species datasets, with models like
DNABERT-2 (Zhou et al., 2023), NucleotideTransformer (Dalla-Torre et al., 2023), GENA-LM (Fishman et al.,
2023), SpliceBERT (Chen et al., 2023), and DNAGPT (Zhang et al., 2023) being trained on a mix of human
genome data and manually curated sets from other species (for example, mixes of species from a taxonomic
class, such as collections of mammals). Some of these models have also explored alternative tokenization
strategies, such as byte-pair encoding, learned for their particular genomic distributions (Zhou et al., 2023,
Fishman et al., 2023, Sanabria et al., 2024, Zhou et al., 2024).

Our metagenomic foundation model differs from these prior works in a few important ways. First, our pretrain-
ing dataset comprises shorter metagenomic sequences (arising from metagenomic next-generation/massively-
parallel sequencing methods) performed on samples of human wastewater collected across many locations;
these samples contain potentially tens-of-thousands of species across a wide range of taxonomic ranks, and
capture a representative distribution of the full human-adjacent microbiome. This includes both recognized
species and many unknown or unclassified sequences (see Sec. 3.1). Another distinction is the model
architecture: we use a decoder-only transformer model, akin to the Llama and GPT model families, which
we further motivate in Sec. 3.3.

3. METAGENE-1: Metagenomic Foundation Model

We pretrain a 7-billion-parameter autoregressive transformer language model, referred to as METAGENE-1,
on a novel corpus of diverse metagenomic DNA and RNA sequences comprising over 1.5 trillion base pairs.
This dataset is sourced from a diverse set of human wastewater samples, which were processed and sequenced
using deep metagenomic (next-generation) sequencing methods. Before training, we carry out byte-pair
encoding (BPE) tokenization on our dataset, tailored for these nucleic acid sequences. The following sections
provide detailed descriptions of the pretraining dataset, tokenization strategy, and model architecture,
highlighting the considerations and design choices that enable the effective modeling of metagenomic data.

3



METAGENE-1: Metagenomic Foundation Model for Pandemic Monitoring

Wastewater Metagenomic SequencesOrganism Genomes

…ATGAAATGTGGAATATCTTTATGTTTGTTC…
…GCAGTCCTGGATTTGGAGGCGATAGAAAAT…
…GTCATGAGGAGCGCTCGCCCTGGTACAGACT…
…CTATCTAACCATGCAGGGTTTCACATCCATA…
…TGGTGGTATGGAATGGAATCGTGGGTAAAAC…
…ATCCATAGCTTCTGTTGACTGGTACACCACA…

Paired-end reads.
Each is ~hundreds 
of base pairs long.
Total of >1.5 trillion 
base pairs of data.

●
●   

 
●  

Figure 2: Overview of the metagenomic data collection and sequencing pipeline for model pretraining. The
process begins with the collection of wastewater (left), which contains genomic fragments from a diverse collection (e.g.,
tens of thousands) of constituent organisms (center). These samples are processed via high-throughput metagenomic
sequencing to produce millions of paired-end reads (right), each consisting of hundreds of base pairs. The complete
dataset comprises over 1.5 trillion base pairs of metagenomic sequences used for model pretraining.

3.1. Metagenomic Dataset

One of the goals of our metagenomic foundation model is to train on a genomic dataset that captures the
immense diversity of the microbiome surrounding humans. To achieve this, we leverage a newly collected
metagenomic dataset—never before used in model training—comprising material from a broad range of
organisms, including bacteria, viruses, cells from human and other eukaryotes, and a diverse array of other
species, which was collected via metagenomic sequencing of human wastewater (i.e., municipal influent). This
approach contrasts with prior genomic sequence models, which often focus on curated collections of specific
(known) species or genomic types. By incorporating DNA and RNA sequences collected from wastewater, we
aim to model the complexity of microbial and viral interactions in human-associated environments.

The dataset was generated using deep metagenomic sequencing, specifically leveraging Illumina sequencing
technology, commonly referred to as next-generation sequencing (NGS) or high-throughput sequencing, in
which billions of nucleic acid fragments are simultaneously sequenced in a massively parallel manner. This
method produces paired-end reads, where each read consists of two contiguous sequences of base pairs from
opposite ends of a DNA or RNA fragment1. Paired-end reads can offer advantages in accuracy and alignment
over single-end reads, particularly for complex metagenomic samples. Notably, the nature of metagenomic
NGS results in much shorter reads compared to datasets used in many previous large genomic models. In our
dataset, most reads range from 100 to 300 base pairs in length (after adapter removal and quality trimming),
which introduces unique challenges for modeling, but also provides a rich diversity and large set of biological
information. We illustrate this metagenomic data collection and sequencing pipeline in Figure 2.

This metagenomic sequence corpus was collected over a six-month period by the Nucleic Acid Observatory
(NAO) (Consortium, 2021) in collaboration with partners (Marc Johnson and Clayton Rushford at the
University of Missouri2 and Jason Rothman in Katrine Whiteson’s lab3 at the University of California, Irvine).
Samples of wastewater were sourced from multiple locations across the United States, in particular from cities
in California and Missouri. After wastewater samples were collected, the material was filtered and nucleic
acids extracted (Rothman et al., 2021, Robinson et al., 2022) before undergoing metagenomic sequencing.
In full, the metagenomic dataset for pretraining comprises over 1.5 trillion base pairs. Our hope is that this
careful sampling and processing approach yields a clean dataset for sequence modeling, which captures a
wide array of genomic content, offering a strong foundation for the training of METAGENE-1.

1Where RNA sequences are first converted into DNA via reverse transcription. 2https://bondlsc.missouri.edu/person/
marc-johnson. 3https://jasonrothman.weebly.com/
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We show an estimate of the metagenomic composition of this pretraining dataset in Figure 3, using the
Kraken 2 (Wood et al., 2019) sequence classification software (see Figure 7 for a more-detailed view). At the
highest level, this visualization shows that 55% of reads are hits for bacteria, 2% of reads are eukaryotes
(predominantly Homo sapiens), 2% of reads are viruses, and 41% of reads have no hits and are unclassified
or of unknown origin.

Figure 3: Metagenomic composition of the METAGENE-1 pretraining dataset, estimated via Kraken 2 (Wood et al.,
2019) sequence classification, and visualized via Krona (Ondov et al., 2011). See Figure 7 for a more-detailed view.

3.2. Tokenization

In developing our metagenomic foundation model, we sought a tokenization strategy that would enable
high-accuracy sequence modeling, accommodate novel nucleic acid sequences, and align with best practices
in modern large language models. We opted for byte-pair encoding (BPE) as our tokenization method, as it
satisfies these criteria, and drawing inspiration from its successful application in recent genomic models.

BPE offers several advantages for our model. Unlike fixed-length k-mer tokenization, it allows for flexible
token sizes, which is beneficial for capturing varying levels of genomic information, and can allow the model
to adapt to different sequence patterns and structures. Moreover, BPE’s ability to tokenize novel sequences is
particularly valuable for modeling diverse metagenomic sequences containing unknown, varied, and possibly
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novel organisms. The method also has the potential to capture semantic information within a vocabulary of
tokens, which can lead to more nuanced representations of genomic data.

To implement this strategy, we first trained a BPE tokenizer on a uniformly-at-random sampled subset of
our pretraining dataset, comprising 2 billion base pairs. After analyzing the distribution of token sizes and
considering training efficiency, we settled on a vocabulary size of 1,024 unique tokens. This vocabulary size
strikes a balance between capturing sufficient genomic complexity, maintaining sufficiently long sequence
lengths (based on the distribution of token sizes), and allowing for computational efficiency. Following this
tokenizer training, we applied this BPE tokenizer to our entire pretraining dataset, effectively preparing it for
model ingestion and training, yielding a set of ∼370 billion tokens (≈1.69 trillion base pairs) for pretraining.
We give a table showing full tokenizer details, including a list of all special tokens, in Appendix B.

3.3. METAGENE-1 Architecture

For our metagenomic foundation model, we pretrain a 7-billion-parameter autoregressive language model,
using a standard dense transformer architecture, similar to the architecture used in popular language models
such as the GPT and Llama model families (Radford et al., 2019, Touvron et al., 2023). Specifically, we
implement a decoder-only style transformer with a causal language modeling objective, where the model
aims to predict the next token in a sequence based on the previous tokens.

Model Details METAGENE-1

Architecture Llama-2-7B
Embedding Size 4096
Intermediate Size 11008
Number of Attention Heads 32
Number of Hidden Layers 32
Vocabulary Size 1024
Sequence Length 512
Normalization RMSNorm
Regularization z-loss
Position Embedding Rotary
Bias None
Warmup Steps 2000
Batch Size 30720
Weight Decay 0.1
Learning Rate Schedule Cosine Decay
Initial Learning Rate 6 × 10−4

β1, β2 0.9, 0.95

Table 1: METAGENE-1 architecture details.

This architecture choice for METAGENE-1 stands in contrast to
some of the alternative approaches explored in recent genomic
models, which include BERT-style bidirectional encoders (Ji et al.,
2021, Zhou et al., 2023, 2024) or non-attention based architec-
tures (Nguyen et al., 2024b,a). Our decision to use this particular
model architecture was driven by the following motivations:

1. Ecosystem: By aligning with this widely-adopted architec-
ture, we can take advantage of the growing ecosystem of
techniques and associated implementations developed for
autoregressive decoder-only transformer models. This ex-
tends to both pretraining optimizations and downstream
applications in fine-tuning and inference.

2. Infrastructure: Given our large dataset size, this architec-
ture allows us to leverage scalable pretraining infrastructure
specifically designed for distributed training of this model
type. This infrastructure has demonstrated success in re-
cent language models, enabling efficient training on massive
datasets.

3. Data characteristics: The nature of our metagenomic se-
quence data, which primarily consists of short sequences,
does not necessitate architectures designed for extremely
long context lengths. This makes the transformer a suitable
and efficient choice for our use case.

We next describe some of the specific configuration details of METAGENE-1. First, the model operates with a
context length of 512 tokens, which is sufficient for all of the metagenomic sequences in our pretraining
dataset. For efficiency, we pack shorter sequences within this context window, a process detailed in Section 4.3

6



METAGENE-1: Metagenomic Foundation Model for Pandemic Monitoring

below. We use an attention mask which prevents attention between the distinct packed sequence reads.
METAGENE-1 consists of 32 layers and 32 attention heads, with an embedding size of 4096 and a hidden layer
size of 11008. We employ root mean square layer normalization throughout the model, with a normalization
epsilon of 1e-5. These configurations result in a model with approximately 7 billion parameters in total. All
architecture details are summarized in Table 1.

4. Pretraining METAGENE-1

4.1. Training Infrastructure

Our model is trained on four nodes, each equipped with 8 H100 SXM5 GPUs interconnected via Ethernet with
40 GB/s bandwidth. This interconnect bandwidth poses a significant performance bottleneck, as it is an order
of magnitude slower than NVIDIA’s InfiniBand and faster Ethernet interconnects. Despite this limitation, we
were able to achieve 40% model FLOPS utilization (MFU) (Chowdhery et al., 2022) by employing a hybrid
sharding strategy. Specifically, we use PyTorch’s HYBRID_SHARD_ZERO2 strategy implemented in its Fully
Sharded Data Parallel (FSDP) utilities. This design choice provides the benefit of model and optimizer state
sharding within each node, while practicing standard data parallelism across nodes to reduce the inter-node
communication overhead. In practice, it only requires an all-reduce operation on the gradient buckets during
the optimizer step.

For training, we use a global batch size of 30,720, a sequence length of 512, and a micro-batch size of 48.
We observe this combination to offer the best trade-off between high MFU and reduced memory usage; it
also allows us to shard the optimizer state and gradients within a single node. Further tests on fewer nodes
yield MFU values of 0.51 and 0.47 for 1-node and 2-node setups, respectively. These results suggest that
interconnect bandwidth was the main bottleneck in our training environment.

Node failure. During training, we experienced three node failures, one GPU failure, one network failure,
and one disk failure. All failures required us to restart the training from the latest checkpoint.

4.2. Stability
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Figure 4: We show z-loss during pretraining, which
aids and gives an indicator of stability.

Foundation model pretraining is prone to suffer from
training instability, which can be more pronounced
when scaling models to billions of parameters (Worts-
man et al., 2023). Such instabilities often arise dur-
ing the middle or late stages of training, and are of-
ten characterized by a sudden spike in loss and/or
other divergent behaviors. Failure to identify these
problems can result in considerable wasted compute
resources. Additionally, the characteristics of the input
data have been shown to influence training stability,
as highlighted by recent work in large multimodal lan-
guage models (Team, 2024).

Given that we scaled directly from sub-billion parame-
ters to a 7 billion parameter model, and that training
on metagenomic sequences is less studied compared to natural language, we anticipated a relatively high
risk of encountering stability issues. To mitigate such risks, we followed best practices from Wortsman et al.
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Figure 5: METAGENE-1 loss curves during pretraining. We show training loss (left), and validation loss on a held out
metagenomic sample (right).

and implemented a variant of the z-loss, referred to as max-z-loss, introduced by Yang et al. with a coefficient
of 2e-4. We opted against the recommendation of QK-layer normalization (Team, 2024) to preserve the
Llama architecture and leverage optimized inference pipelines.

During training, we monitored the norms of the language model head, the query, key, and value outputs, as
well as the gradient norms. Wortsman et al. empirically shows that a significant increase in any of these
metrics may signify potential instability, allowing us to intervene early by restarting the training. Fortunately,
no stability issues were observed, and these metrics remained consistent throughout the training process.

4.3. Context Stuffing

A significant portion of our dataset contains sequences with fewer tokens than our model’s context length.
To optimize compute efficiency and avoid wasting resources on padding tokens, we pack the sequence
dimension with multiple samples, where applicable. We modify the attention mask to ensure that tokens
from different samples cannot attend to one another. This is implemented using the variable length function
in FlashAttention-24 (Dao, 2023) which avoids materializing the full mask, which would have been inefficient.

4.4. Continual Pretraining

After the initial stage of pretraining is complete, we carry out a second stage of pretraining which constitutes
about 9% of our total number of pretraining tokens. In this second stage of training, we extend our dataset
to a broader distribution of genomic sequences relative to our original metagenomic distribution, and we
follow practices for continual learning, such as annealing the learning rate both to enact a warmup period
(i.e., a linear ramp up to account for the shifted data distribution), and a cooldown period (i.e., a ramp down
of the learning rate at the end of training for improved performance (Hägele et al., 2024)).

The modified training distribution aims to allow for us to maintain performance on metagenomic tasks, such
as metagenomic embedding and classification, while also achieving improved performance on a broader
set of genomic tasks (i.e., tasks involving non-metagenomic data). For this, we sample sequences from the
dataset provided by Zhou et al. (2023), which includes genomic sequences from known organisms—both
from human genomes and a curated selection of genomes from multiple species (e.g., fungi, mammalian,
invertebrate, bacteria)—and shuffle it into our metagenomic reads at a 1:8 ratio.

4Named function flash_attn_varlen_func in the FlashAttention-2 Python package.
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5. Empirical Results

5.1. Pretraining Performance

As an initial analysis of METAGENE-1, in Figure 5, we show two loss curves generated over the course of
pretraining. On the left, we show the training loss over one epoch of our 1.5-trillion-base-pair pretraining
dataset. On the right, we show the validation loss, computed on a held-out portion of our metagenomic
dataset. In the training curve we note that there are slight systematic oscillations over the course of training,
which occur due to pseudo-random data shuffling (implemented for efficiency reasons); however, these do
not appear in our validation loss curve.

5.2. Pathogen Detection Benchmark

Our initial experiments evaluate METAGENE-1’s reliability in detecting human pathogens. To this end, we
construct four datasets with binary labels, aiming to classify human pathogens versus non-pathogens. These
datasets are constructed from four distinct sequencing deliveries, which are excluded from our pretraining
data. For each delivery, we extract two sets of sequencing reads: pathogen and non-pathogen. Pathogen
reads are defined as a subset of sequencing reads meeting two criteria: (1) Kraken 2 (Wood et al., 2019)5

identifies at least one hit on a k-mer associated with a human-infecting virus, and (2) the read aligns with a
human-infecting virus genome in GenBank6. The sub-tasks in this pathogen detection benchmark represent
different deliveries, which vary by collection location, sequencing pipeline, date, or a combination of these
factors. Each dataset contains 1,600 training samples and 2,000 test samples. We intentionally use a small
training set to mimic real-world scenarios where rare human pathogens are expensive to identify.

DNABERT-2 DNABERT-S NT-2.5b-Multi NT-2.5b-1000g METAGENE-1

Pathogen-Detect (avg.) 87.92 87.02 82.43 79.02 92.96

Pathogen-Detect-1 86.73 85.43 83.80 77.52 92.14
Pathogen-Detect-2 86.90 85.23 83.53 80.38 90.91
Pathogen-Detect-3 88.30 89.01 82.48 79.83 93.70
Pathogen-Detect-4 89.77 88.41 79.91 78.37 95.10

Table 2: Results on the Pathogen Detection benchmark. The metric used for all evaluations is MCC. The header row
reports macro-averaged performance metrics. See Section 5.2 for details.

We evaluate the performance of METAGENE-1 and other genomic foundation models on the pathogen
detection datasets, measured using the Matthews correlation coefficient (MCC). All models were trained with
a consistent set of hyperparameters: DNABERT (Zhou et al., 2024) variants undergo full-model fine-tuning,
while Nucleotide Transformer (NT) (Dalla-Torre et al., 2023) variants and METAGENE-1 are fine-tuned using
low-rank adapters (LoRA) (Hu et al., 2021). For sequence-level classification, we use the built-in pooler
for DNABERT and NT models provided in HuggingFace Transformers (Wolf, 2019), and use mean-pooled
representations for METAGENE-1. Additional experimental details can be found in Appendix C.1.

As shown in Table 2, METAGENE-1 consistently outperforms all other models across the Pathogen Detection
benchmark, with gains ranging from approximately 3 to 17 MCC points over the strongest competing models.
These results highlight METAGENE-1’s strong performance in pathogen detection tasks, particularly in
scenarios with diverse sequencing conditions or delivery pipelines.

5We use the 2024-06 Standard Database for identification. 6We use the 2024-06 GenBank release available at https://www.
ncbi.nlm.nih.gov/genbank/.
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DNABERT-2 DNABERT-S NT-2.5b-Multi NT-2.5b-1000g METAGENE-1

Human-Virus (avg.) 0.564 0.570 0.675 0.710 0.775

Human-Virus-1 0.594 0.605 0.671 0.721 0.828
Human-Virus-2 0.507 0.510 0.652 0.624 0.742
Human-Virus-3 0.606 0.612 0.758 0.740 0.835
Human-Virus-4 0.550 0.551 0.620 0.755 0.697

HMPD (avg.) 0.397 0.403 0.449 0.451 0.465

HMPD-single 0.292 0.293 0.285 0.292 0.297
HMPD-disease 0.480 0.486 0.498 0.489 0.542
HMPD-sex 0.366 0.367 0.487 0.476 0.495
HMPD-source 0.451 0.465 0.523 0.545 0.526

HVR (avg.) 0.479 0.479 0.546 0.524 0.550

HVR-p2p 0.548 0.550 0.559 0.650 0.466
HVR-s2s-align 0.243 0.241 0.266 0.293 0.267
HVR-s2s-small 0.373 0.372 0.357 0.371 0.467
HVR-s2s-tiny 0.753 0.753 1.000 0.782 1.000

HMPR (avg.) 0.347 0.351 0.348 0.403 0.476

HMPR-p2p 0.566 0.580 0.471 0.543 0.479
HMPR-s2s-align 0.127 0.129 0.144 0.219 0.140
HMPR-s2s-small 0.419 0.421 0.443 0.459 0.432
HMPR-s2s-tiny 0.274 0.274 0.332 0.391 0.855

Global Average 0.475 0.479 0.525 0.545 0.590

Table 3: Results on the Genomic Embedding (Gene-MTEB) benchmark. See Section 5.3 for details.

5.3. Genomic Embedding Benchmark

Next, we assess METAGENE-1’s ability to generate high-quality representations in a zero-shot manner. These
representations are crucial for lightweight development of predictive models using a frozen foundation
model (Devlin, 2018, Karpukhin et al., 2020, inter alia). They enhance interpretability by enabling sparse
autoencoders to produce semantically meaningful encodings (Bricken et al., 2023, Gao et al., 2024). Addi-
tionally, they are vital for anomaly detection methods that rely on them for effective modeling (Yang et al.,
2024). Drawing inspiration from MTEB (Muennighoff et al., 2022), we introduce a large-scale genomics
embedding benchmark, termed Gene-MTEB, to advance the development of robust genomics representations.

For this benchmark, we curate eight classification tasks (Human-Virus-1-4, MHPD-single, HMPD-disease,
HMPD-source, HMPD-sex), and eight clustering tasks (HVR-p2p, HVR-s2s-align, HVR-s2s-small, HVR-s2s-
tiny, HMPR-p2p,HMPR-s2s-align, HMPR-s2s-small, HMPR-s2s-tiny). Datasets for these tasks are sourced
from the Human Microbiome Project (Peterson et al., 2009), and held-out portions of our metagenomic
dataset. Details and access to all benchmark datasets are provided on the project HuggingFace page. All
classification tasks carry out logistic regression on top of embeddings and all clustering tasks carry out
mini-batch k-means. Embeddings for all models are accessed via mean pooling on the last hidden state.

Results on Gene-MTEB are shown in Table 3. Here, accuracy is shown for classification and V-measure for
clustering tasks. We find that METAGENE-1 shows strong embedding performance across the board, and in
particular for Human-Virus datasets, scoring over 6 points above all other models. Continual training with
representation learning objectives, such as contrastive losses, could further enhance its embedding quality
beyond its current LM-based pretraining.
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CNN HyenaDNA DNABERT NT-2.5B-Multi DNABERT-2 METAGENE-1

TF-Mouse (avg.) 45.3 51.0 57.7 67.0 68.0 71.4

0 31.1 35.6 42.3 63.3 56.8 61.5
1 59.7 80.5 79.1 83.8 84.8 83.7
2 63.2 65.3 69.9 71.5 79.3 83.0
3 45.5 54.2 55.4 69.4 66.5 82.2
4 27.2 19.2 42.0 47.1 52.7 46.6

TF-Human (avg.) 50.7 56.0 64.4 62.6 70.1 68.3

0 54.0 62.3 68.0 66.6 72.0 68.9
1 63.2 67.9 70.9 66.6 76.1 70.8
2 45.2 46.9 60.5 58.7 66.5 65.9
3 29.8 41.8 53.0 51.7 58.5 58.1
4 61.5 61.2 69.8 69.3 77.4 77.9

EMP (avg.) 37.6 44.9 49.5 58.1 56.0 66.0

H3 61.5 67.2 74.2 78.8 78.3 80.2
H3K14ac 29.7 32.0 42.1 56.2 52.6 64.9

H3K36me3 38.6 48.3 48.5 62.0 56.9 66.7
H3K4me1 26.1 35.8 43.0 55.3 50.5 55.3
H3K4me2 25.8 25.8 31.3 36.5 31.1 51.2
H3K4me3 20.5 23.1 28.9 40.3 36.3 58.5
H3K79me3 46.3 54.1 60.1 64.7 67.4 73.0
H3K9ac 40.0 50.8 50.5 56.0 55.6 65.5

H4 62.3 73.7 78.3 81.7 80.7 82.7
H4ac 25.5 38.4 38.6 49.1 50.4 61.7

PD (avg.) 77.1 35.0 84.6 88.1 84.2 82.3

All 75.8 47.4 90.4 91.0 86.8 86.0
No-TATA 85.1 52.2 93.6 94.0 94.3 93.7
TATA 70.3 5.3 69.8 79.4 71.6 67.4

CPD (avg.) 62.5 48.4 73.0 71.6 70.5 69.9

All 58.1 37.0 70.9 70.3 69.4 66.4
No-TATA 60.1 35.4 69.8 71.6 68.0 68.3
TATA 69.3 72.9 78.2 73.0 74.2 75.1

SSD 76.8 72.7 84.1 89.3 85.0 87.8

COVID 22.2 23.3 62.2 73.0 71.9 72.5

Global Win % 0.0 0.0 7.1 21.4 25.0 46.4

Table 4: Results on the Genome Understanding Evaluation (GUE) benchmark. Non-METAGENE-1 results are adapted
from Zhou et al. (2023). The metric used for all evaluations is MCC, except for the COVID task, which uses F1 score.
The header rows report macro-averaged performance metrics. The final row shows Global Win %, i.e., the percentage
of tasks in which a given method achieves top score under the associated metric.

5.4. Genome Understanding Evaluation Benchmark

We now investigate the viability of METAGENE-1 as a general-purpose foundation model. Importantly, we aim
to assess its performance on nucleotide sequences sampled from a diverse array of species. One such example
is long-sequence full-animal-genome datasets. In many prior genomic sequence models’ pretraining datasets,
this type of genomic data is found in abundance (Dalla-Torre et al., 2023, Ji et al., 2021, Nguyen et al., 2024b,
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Zhou et al., 2023). As a pilot study, we perform fine-tuning experiments on the Genome Understanding
Evaluation (GUE) benchmark (Zhou et al., 2023), which comprises 28 sequence-level classification tasks
curated from this type of genomics data.

Following Section 5.2, we fine-tune low-rank adapters (LoRA) (Hu et al., 2021) and a linear classification
head that projects average-pooled representations from the last hidden layer to the class logits. This setup is
aimed to emulate downstream users with a limited compute budget. For each experiment, we perform a grid
search over linearly spaced learning rates from 1e-4 to 1e-3 and select LoRA modules from query-value and
query-key-value-dense combinations. We fix all other hyperparameters and select the best configuration based
on validation performances. Additional details on training hyperparameters can be found in Appendix C.2.
Following the metrics selected in Zhou et al., we report Matthews correlation coefficient (MCC) on all but
the COVID task, which instead uses the F1 score.

In Table 4, we present METAGENE-1’s performance on the GUE benchmark. Our findings show that
METAGENE-1 outperforms or remains competitive with state-of-the-art foundation models specializing
in multi-species genomics prediction, achieving a top score on 13 out of 28 GUE subtasks (compared with
DNABERT-2, the second highest scoring model, that achieves a top score on 7 out of 28 subtasks). Notably,
METAGENE-1 excels in Epigenetic Marks Prediction (EMP) tasks but shows room for improvement in (Core)
Promoter Detection (PD/CPD). We attribute this to limitations in the pre-training data mixture, and believe
that a more tailored pre-training dataset could potentially enhance METAGENE-1’s performance in this area.
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Figure 6: Distribution of the length-normalized cross entropy loss across all datasets, given by METAGENE-1.

Group F1 Loss (Std. Err) Tokenized Seq Len (Std. Dev)
Metagenomics - 1.24 (1.31) 24.91 (3.35)
Random 0.91 5.83 (0.29) 27.16 (1.32)
Human 0.94 5.22 (0.22) 27.29 (1.33)
Mouse 0.91 5.38 (0.54) 27.2 (1.34)

Table 5: OOD detection performance between metagenomics sequences and other data sources.

5.5. Anomaly Detection from Wastewater

Our final experiment aims to show the feasibility of METAGENE-1 to detect out-of-distribution (OOD) data at
scale, as it serves as a primer for reliable anomaly detection from wastewater samples. In this early study,
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we sample 5000 sequences from, respectively, our metagenomics pretraining data, the mouse and human
genomes from the GUE dataset, as well as uniform random sequences as a control group. All sequences are
truncated to 100 base pairs in accordance with the sequence lengths from the GUE dataset. As a baseline,
we implement a threshold-based anomaly detector, which classifies samples with length-normalized cross
entropy losses below a certain threshold as non-anomalies, and vice versa. We select a threshold of 3 based on
our observations from the validation curve in Figure 5. Note that this anomaly detection study is performed
using a checkpoint of METAGENE-1 that has only been pretrained on metagenomic data (i.e., without
second-stage training).

Figure 6 indicates a clear separation between metagenomics sequences and other data sources. The in-
distribution data behaves within our expectation; the human and mouse genomic data both attain a similar
mode and spread, and their loss distributions are more similar to that of random sequences, compared to
our in-distribution data. Table 5 reports numerical results of our OOD detection tests. METAGENE-1 achieves
strong performance for separating metagenomics sequences from other data sources.

6. Safety Considerations

Metagenomic foundation models like METAGENE-1 demonstrate improved capabilities on tasks that can
aid in biosurveillance, genomic anomaly detection, and pandemic monitoring. While still relatively small
in scale compared with many modern language models, METAGENE-1 shows state-of-the-art results on
benchmarks and enables potential downstream uses. However, these capabilities merit careful consideration
of safety and must be balanced against potential risks. This category of genomic model—and especially,
future larger variants of it—could pose risks to human health and safety by enabling harmful applications,
such as the design of novel pathogenic DNA sequences or synthetic genetic materials. These potential abuses
were considered when deciding to open source METAGENE-1. The final decision was based on weighing the
beneficial applications, such as pandemic preparedness, against the potential for misuse. Based on our safety
considerations, which we outline below, we believe that the current iteration of METAGENE-1 poses minimal
risk, and its release is justified by its significant positive potential. However, we also recognize and discuss
the need for careful safety considerations before open sourcing increasingly capable models of this type.

Relation to other open source genomic models. METAGENE-1 is a genomic foundation model that builds
upon a lineage of similar open-source efforts, such as NucleotideTransformer (Dalla-Torre et al., 2023),
DNABERT (Ji et al., 2021), HyenaDNA (Nguyen et al., 2024b), Evo (Nguyen et al., 2024a), and more. At
7 billion parameters, METAGENE-1 matches the largest of these existing models. The key distinction of
METAGENE-1 lies in the model’s training data: a highly diverse set of metagenomic sequences derived from
wastewater, with a focus on the human microbiome. This dataset, comprising short uncurated sequences
from tens of thousands of species, allows METAGENE-1 to excel at representing the complexities of microbial
and viral diversity in metagenomic samples, providing unique advantages in biosurveillance applications.
Similar to other genomic foundation models, and unlike large language models, these models alone do not
possess significant reasoning or control capabilities (given that complex control instructions cannot easily be
provided via input context, which is restricted to genomic sequences).

Tailored for detection, not design. METAGENE-1 was specifically designed for anomaly detection in
metagenomic data, not for complex genomic design tasks. The training data, model architecture, and task
design are geared toward detecting and classifying anomalies in short sequences of a few hundred base pairs.
Notably, all metagenomic data used in pretraining METAGENE-1 consist exclusively of sequences ranging from
100 to 300 base pairs. Unlike large genomic models focused on longer sequence generation, METAGENE-1’s
capabilities are tailored to analyzing these short metagenomic reads. Its architectural constraints, including a
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maximum context length of 512 tokens, further limit its applicability to sequence design tasks. These design
decisions ensure that the model’s primary utility lies in detecting pathogens and monitoring biosurveillance
trends, rather than enabling misuse in synthetic biology.

Pros and cons of open source. Open sourcing a model of this type is a balance between the potential
for help and harm. In the case of METAGENE-1, we believe that open source is net positive for research
in the area of anomaly detection for pathogen monitoring. We hope that the availability of this model can
have a positive impact on facilitating safety research, a prospect that we discuss in Section 7. Nonetheless,
we recognize the importance of caution when releasing models in this domain. For future iterations of
pathogen-detection models with improved capabilities, we believe strongly in (and we ourselves are are
committed to) thoroughly evaluating the safety and potential for misuse before an open source release.
Larger-scale models, in particular, present additional risks, and we advocate for rigorous safety assessments
in determining whether such models should be released publicly. By prioritizing careful oversight and
responsible scaling, we aim to mitigate risks while maximizing the benefits of this technology for public
health and biosurveillance.

7. Discussion, Limitations, Conclusion

We have reported our current progress on pretraining and evaluating METAGENE-1, the first large-scale
foundation model pretrained on metagenomic sequences. We detail our dataset construction, model training,
and fine-tuning procedure to facilitate open-science research. Additionally, we open-source our training code
and model checkpoints.

Our downstream performance on genomic benchmarks indicates the potential of METAGENE-1 as a general-
purpose foundation model. Our results also indicate that METAGENE-1 benefits from continual pretraining
on a diverse mixture of data sources in addition to metagenomic data (at least for tasks similar to these
genomic benchmarks). We are continuing to actively explore this direction, through incorporating additional
human reference genomes and multi-species genomic datasets in our metagenomic pretraining data.

Limitations. METAGENE-1 is pretrained on a dataset consisting primarily of wastewater metagenomics
and multi-species genomic sequences, making it well-suited for downstream tasks within this distribution.
However, like many foundation models, it requires additional fine-tuning to achieve optimal performance
for specific applications. Additionally, the pretraining data predominantly consist of short metagenomic
sequencing reads, limiting the model’s performance to contexts involving shorter metagenomics inputs. This
may restrict its effectiveness for tasks involving long-read or full-genome data, where long-sequence models
may be necessary (Nguyen et al., 2024a,b).

Future directions. There are many potential avenues for future research. An area that we are particularly
excited about concerns the understanding of genomic foundation models. While a great deal of prior work
has studied the mechanistic interpretability of language models (Wang et al., 2022, Hanna et al., 2024,
Conmy et al., 2023, Syed et al., 2023), their extensions beyond language and vision have been limited.
Future work could systematize approaches to mechanistic interpretability in genomics by leveraging sparse
autoencoders (SAEs) (Bricken et al., 2023, Gao et al., 2024, Lieberum et al., 2024) to identify biologically
meaningful features, employing attribution methods to trace model predictions to genomic regions (Koo
and Ploenzke, 2020, Tseng et al., 2020, Majdandzic et al., 2022), and developing new tools for probing
model representations using task-specific datasets (Conneau et al., 2018, Hewitt and Liang, 2019). A better
understanding of these models would not only advance their reliability but also help mitigate risks, such as
inadvertently generating or propagating harmful genomic sequences.
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Finally, we are actively developing a standardized evaluation suite consisting of classification, embedding,
out-of-distribution detection, and pandemic monitoring tasks for metagenomics sequences. We hope our
effort can facilitate objective evaluation of METAGENE-1 and future metagenomic models, and we invite
both domain experts and the machine learning community to contribute to this research.
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Appendix

A. Additional Details on the Metagenomic Pretraining Dataset

In Figure 7, we show a visualization of (a relatively small subset of) the composition of metagenomic
information contained in our pretraining dataset. This composition is estimated through the Kraken 2
metagenomic sequence classification software (Wood et al., 2019), which gives taxonomic hits for reads
in our pretraining set (where taxonomic classification is performed using exact k-mer matches). We show
three plots in Figure 7: first, the full pretraining dataset distribution (top); then, an example subset of this
showing the distribution of viruses (middle); and finally, an example subset of this showing the distribution
of the Steitzviridae family of viruses (bottom).

B. Tokenizer Details

Our tokenizer implementation is adapted from minbpe7. It is trained on a subset of sequences consisting of
2 billion base pairs. These sequences are uniformly sampled from all of the available wastewater sequencing
runs from our data sources. Similarly to BPE tokenizers trained on natural language datasets, we treat the
beginning of each sequence differently, in our case by prepending a ‘_’ character to the beginning of each
read. During pretraining, we postpend a [BOS] token to separate each sequence. Our tokenizer consists
of the following special tokens: [PAD], [UNK], [SEP], [BOS], [EOS], and [MASK] to allow for diverse
applications during fine-tuning. In total, it has of a vocabulary size of 1024.

In our preliminary experiments, we also experimented with a larger vocabulary size of 4096, but due to length
characteristics of our metagenomic data, this design choice results in many short tokenized sequences that
may not be able to provide meaningful learning signal. We thus decided to move forward with a vocabulary
size of 1024 to balance efficiency and downstream performance.

7https://github.com/karpathy/minbpe
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Figure 7: A visualization of the composition of metagenomic information contained in our pretraining dataset, based
on Kraken 2 metagenomic sequence classification hits (Wood et al., 2019). We first show the full pretraining dataset
distribution (top), and then as an example show the distribution of viruses (middle), and finally the distribution of the
Steitzviridae family of viruses (bottom).
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C. Additional Experimental Details

C.1. Additional Details for the Pathogen Detection Benchmark

In Table 6, we show our choices of hyperparameters for fine-tuning experiments.

DNABERT-⋆ Full Model
NT-⋆ LoRA
METAGENE-1 LoRA

LoRA Modules query, key, value, dense
LoRA Rank 8
LoRA α 16
LoRA Dropout 0.1

Optimizer AdamW
Optimizer Momentum β1, β2 = 0.9, 0.999
Learning Rate 1e-4Λ

LR Scheduler Linear Warmup + Constant LR
Warmup Steps 50
Weight Decay 0.01
Denominator ϵ 1e-8
Precision BF16-mixed

Batch Size 32
Epochs 10
Hardware NVIDIA A100 80GB

Table 6: Hyperparameter settings for the Pathogen Detection fine-tuning experiments. Λ: for DNABERT-S, we halve
the learning to 5e-5 as we observe clear oscillation behavior in the training loss.
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C.2. Additional Details for the GUE Benchmark

In Table 7, we show our choices of hyperparameters for fine-tuning experiments.

LoRA Modules query, key, value, denseΛ

LoRA Rank 8
LoRA α 16
LoRA Dropout 0.1

Optimizer AdamW
Optimizer Momentum β1, β2 = 0.9, 0.999
Learning Rate {1e-4 ⋯ 1e-3}Ω

LR Scheduler Linear Warmup + Constant LR
Warmup Steps 50
Weight Decay 0.01
Denominator ϵ 1e-8
Precision BF16-mixed

Batch Size 32
Epochs 10
Hardware NVIDIA A100 80GB

Table 7: Hyperparameter settings for the GUE fine-tuning experiments. Λ: LoRA is applied to query-value or query-key-
value-dense modules. Ω: learning rates are tuned over a equally-spaced grid of 1e-4, 2e-4,⋯, 1e-3. All hyperparameters
are selected according to performances on validation sets.

23


	Introduction
	Related Work
	METAGENE-1: Metagenomic Foundation Model
	Metagenomic Dataset
	Tokenization
	METAGENE-1 Architecture

	Pretraining METAGENE-1
	Training Infrastructure
	Stability
	Context Stuffing
	Continual Pretraining

	Empirical Results
	Pretraining Performance
	Pathogen Detection Benchmark
	Genomic Embedding Benchmark
	Genome Understanding Evaluation Benchmark
	Anomaly Detection from Wastewater

	Safety Considerations
	Discussion, Limitations, Conclusion
	Additional Details on the Metagenomic Pretraining Dataset
	Tokenizer Details
	Additional Experimental Details
	Additional Details for the Pathogen Detection Benchmark
	Additional Details for the GUE Benchmark


